INTRODUCTION TO OPEN-END BELTS Megadyne started manufacturing moulded transmission belts in 1957 and extruding open ended belts in 1975. Megalinear open length belts are manufactured in thermoplastic polyurethane, that gives superior wear and abrasion resistance. Various types of steel cord, offer good running characteristics, even under high tractive loads. Advanced production processes, allow the ability to engineer bespoke technical design solutions to meet market demands. By selecting from a range of components and materials, Megalinear belts can be manufactured to perform in even the most demanding applications. **MEGALINEAR** open-end belts are particularly suited where the most precise accuracy of position, low noise and long maintenance free cycles are the key requirements. Megadyne has expanded the Megalinear range to include: - MEGALINEAR QST - MEGALINEAR GW - MEGALINEAR FC FCM XMD - MEGALINEAR MEGAC4T™ Uniquely designed to reduce the noise levels, generated during high speed operations, **MEGALINEAR QST** is completely self-tracking without the need for flanged pulleys. The nylon faced helical offset teeth design, provides a high torque capacity. For heavier applications, Megadyne have introduced the MEGALINEAR GW, a high performance thermoplastic polyurethane belt. Superior load capacities can be achieved due to the high shear strength of the tooth design, coupled with high tension, steel zinc coated cords, MEGALINEAR GW guarantees a greater transmittable power under continuous high loads. **MEGALINEAR FC** is a new range of belts of the MEGALINEAR family. Specifically introduced for the food processing industry, MEGALINEAR FC is manufactured with Food Contact approved materials, according to European regulations EU 1935/2004, EU 10/2011 and EU 174/2015. It's manufactured in T5/T10 pitches without nose gap between the teeth and available with a variety of backing profiles, for all kinds of conveying and processing applications. These advanced FDA synchronous belts have excellent resistance to chemicals and corrosion, certified for wet and dry food contact. The homogenous belt design ensures a significantly greater service life, with a high level of hygienic integrity. On request and with minimum quantity, it's possible to produce **MEGALINEAR FCM**, made in sky blue colour (RAL 5012) and certified for direct contact with dry and wet food. Both MEGALINEAR FC AND FCM can be made with a special Metal and X-Ray detectable compound. **MEGALINEAR XMD** decreases the risk of contamination from belt fragments protecting Consumer Safety. ## **INTRODUCTION TO OPEN-END BELTS** MEGAG47 Megalinear Adaptable Cleats For **T**ransport - is the most versatile belt ever! Its design with quick and easy interchangeable profiles means you can use the same belt for a wide variety of applications, transporting goods of different shapes on a single transport system with a minimum of downtime! Thanks to their features, Megalinear belts can be successfully used in a wide range of applications such as: - automatic sliding doors and garage opening system - elevators - · automated handling devices - linear drivers - positioning system - conveyors - wood industry - · textile machine - serigraphic industry - · glass industry - stone and marble industry - packaging industry - robot systems - tobacco industry - · paper and carton industry - chemist and pharmaceutical industry - Food industry Megadyne has developed a very wide range of solutions with numerous tooth designs, tensile members and compound, suitable for all applications. ## **STANDARD RANGE** MXL • XL • L • H • XH T2,5 • T5* • TT5 • T10* • T20 AT3 • AT5 • AT10 • MEGAC4T™ AT10 • AT20 MTD3 • MTD5 • MTD8 • MTD14 RPP5 • RPP8 • RPP14 • RPP14XHP STD5 • STD8 HG • TG5 • TG10K6 • TG10K13 • TG20 • ATG5 • ATG10 • ATG20 QST5 • QST8 • QST14 GW14 • GW20 P1 • P2 • P3 • P4 ^{*} Available in Food Contact (FC) / X-Ray and Metal detectable (XMD) versions. ### **CLASSIFICATIONS** ## **CLASSIFICATIONS** Megalinear Timing Belts are manufactured in thermoplastic polyurethane, with single parallel steel cords. This type of belts, developed by our Research & Development, offers good running characteristics and high traction loads. They are especially suited for power transmission and conveying with high loads and speeds. The addition of a nylon coating on the teeth during production enhances the running properties for specific applications and reduces the noise due to a lower frictional coefficient. An extra thickness of special coating is also possible on the back of the belt offering extra protection against aggressive or heavy products. - 1. The body of the belts is white thermoplastic polyurethane 92 ShA, characterized by high levels of wear resistance even in the presence of shock and surge loading. - 2. High strength S and Z parallel zinked steel tension members allow high breaking load and extremely low elongation. The combination of these high grade materials improves belt performances which can be summarised as follows: - · exceptional resistance to abrasion and tooth shear - · low coefficient of friction - · high flexibility - ozone and temperature resistance (-25 °C / +80 °C) - oil, grease and gasoline resistance ### **MECHANICAL AND CHEMICAL CHARACTERISTICS** - Constant dimensions - Noiseless - Free maintenance - High flexibility - High resistance steel traction cords, with little stretching and top flexibility - Linear speeds up to 20 m/s - Low pretension - Constant length - High abrasion resistance - Ageing, Hydrolysis, Ozone resistant - Working temperature -25 °C / +80 °C - High resistance to Oils, Greases and Gasoline - Fairly Acid-proof and Alkali-proof ### **BODY** Megalinear belts are manufactured with white thermoplastic Polyurethane 92 ShA as standard. Special compounds (different hardnesses, special properties) are available on request. Special compound and cords have to be tested and homologated on the application. Megadyne is not responsible for wrong functioning of special products. Here under some PU characteristics: Water No problem in normal or sea clean water, at room temperature. Over 60 °C there is a fast decrement of breaking strength. **Acids** In acid diluted proportions, at room temperature, this PU is moderately attacked. In high concentration acid solutions, this PU has a very short lifespan. Over 50 °C, acids are always dangerous for Thermoplastic PU. **Alkalis** In alkalis diluted proportions, at room temperature, this PU is moderately attacked. In high concentration alkaline solutions, this PU has a very short lifespan. Over 50 °C, alkalis are always dangerous for Thermoplastic PU. **Solvents** Thermoplastic PU is insoluble in the greater part of solvents. Only the very polar solvents (same as tetrahydrofuran, dimethylformamide, n-methylpyrrolidone) can dissolve or tight damage PU. The Esters or the Ketons (same as ethyl acetate or methylethylketene) can usually produce a bulge, decreasing mechanical characteristics. The Hydrocarbons aromatic and the Hydrocarbons aliphatic produce very high bulge. All the effects increase by increasing temperature. Oils PU has a high resistance to mineral pure oils (lubrificants, engine oils, combustible oils). Usually, high performance syntetic oils, due to special additives contained, can be incompatible with Thermoplastic PU, especially at high temperature. ### CLASSIFICATIONS Greases PU has a high resistance to mineral pure greases (lubrificants greases). Usually, high performance syntetic greases, due to special additives contained, can be incompatible with Thermoplastic PU, especially at high temperature. **Fuels** Good resistance to petrols without Alcohols. > In presence of Alcohols, Thermoplastic PU can suffer deterioration. Fuels including Aromatiche stuffs can produce reversible bulges. In presence of grime, containing humidity, Microorganisms can develop. **Microorganisms** In case that Microbic attack can produce danger, you have to use a special kind of PU. Good resistance to atmospheric agents. White colour can change to light yellow under long UV exposure. In any case this hasn't influence on mechanical resistance. #### **CORDS** ### Standard cord Kevlar Weather agents Megalinear is manufactured with S and Z parallel zinked steel cords as standard. Kevlar tension cords are suggested for: Non magnetic, for use in drives with metal detectors Widely used in the food industry Applications in damp evoironement must be avoided Kevlar cord belts have a lower dimentional stabiliy compared to stell cord belts. Length and tollerance may change. HP High Performance cords have 25% more strength capacity than standard cords. They are recommended for high repeatability applications. HF High Flexibility cords can accept smaller pulley and idler diameters than standard cords. They are suitable for multi-shaft drives with severe reverse bending. **HPF** High Performance and Flexibility cords have 25% more strength capacity like the HP cords, but they are more flexible than the HP cords. They are suggested for high performance and multi-shaft drives. Stainless steel Stainless steel cords have 25% less strength capacity than standard cords. They are recommended for water applications. ## COATING Megalinear can be manufactured with special coating on the teeth or on the back. Please check on page 120 and 121. ### **IDENTIFICATION CODE** Using the information in the table below, it is possible to identify the correct belt for every application. The code is composed of letters and numbers as the following example:: | 1 | 2 | 3 | | 4 | | 5 | | 6 | |-----|------|------|---|----|---|-------|---|----------------------| | J + | F 50 | + AT | + | 10 | + | 10000 | + | SPECIAL MANUFACTURES | J 1) joined belt. > ML Megalinear belt open-end. 2) 50 this number indicates the width of requested belt. The value is in mm for a belt with a pitch in mm, and in inches for a belt with a pitch in inches. 3) AΤ this code composed by letters
indicates the selection of profile. 4) 10 this number indicates the standard pitch of the belt. It is expressed in mm. 5) 10000 the last number indicates the length of the belt always in mm regardless of pitch. **SPECIAL MANUFACTURES:** 6) • special cords as Kevlar or HP or HF or HPF or stainless steel special compound as different hardness 85 ShA or different colours (black - red - yellow - blue) extra coating NFT or NFB or AVAFC or Tenax or Linatex or Honey comb or PU black cellulose or PU yellow or Neoprene rubber. # **TECHNICAL CALCULATION** # **LINEAR MOTION BELT** ## **OMEGA LINEAR MOTION BELT** # **CONVEYOR BELT** The following pages contain data, formulae and tables that are required to design a new belt drive. For critical and difficult drives, it is raccomended that you contact our Application Department for advice. | Symbol | Unit | Definition | Symbol | Unit | Definition | |---------------------|------|--|-----------------------|------------------|---| | а | m/s² | acceleration | g | m/s ² | gravity (9,81) | | b | mm | belt width | μ | - | friction coefficient | | C | - | safety factor | m | Kg | conveyed mass | | ΔI/ ₀₀ | ‰ | elongation | M _t | Nm | drive torque | | d | mm | idler pitch diameters | n, | 1/min | revs/min (RPM) of drive sprocket 1 | | d, | mm | sprocket pitch diameter | P | KW | drive power | | F _p | Ν | pretension | Q | Ν | force exerted by mass (m) | | F _u | Ν | peripheral force | V | m/s | belt speed | | F _{p spec} | N/cm | transmittable force per tooth per unit width | Z i | | number of teeth of sprocket | | MTL | Ν | max traction load | Z _m | | number of teeth in mesh on driver sprocket (12) | | BS | Ν | breaking strength | Z L | | number of teeth of large pulley | | С | mm | centre distance | Z _s | | number of teeth of small pulley | | | | | р | | belt pitch | | | | | | | | Max traction load is maximum acceptable traction on cords. Breaking strength is necessary load to break belt cords. Elongation is belt elongation under load. ### **USEFUL FORMULAE AND CONVERSION FACTORS** $$V = \frac{d_1 \cdot n_1}{19100} \qquad n_1 = \frac{V \cdot 19100}{d_1} \qquad d_1 = \frac{V \cdot 19100}{n_1} \qquad Q = m \cdot g$$ $$P = \frac{M_t \cdot n_1}{9550} \qquad M_t = \frac{9550 \cdot P}{n_1} \qquad M_t = \frac{F_u \cdot d_1}{2000}$$ # **TECHNICAL CALCULATION** ### **CHOICE OF BELT PITCH AND SPROCKETS** For optimum belt pitch see tables on page 10. For optimum choice of sprocket size, it is desiderable to have as near to 12 teeth in mesh as possible. Knowing mass ______ For horizontal & conveying drives $F_u = (m \cdot a) + (m \cdot g \cdot \mu)$ (Note: values of μ can be found in table 1 on page 11). For vertical drives $F_u = (m \cdot a) + (m \cdot g)$ Knowing drive torque $F_u = 2000 \text{ M}_t / \text{d}_1$ Knowing drive power $F_u = 19.1 \cdot 10^6 \cdot \text{P} / (\text{d}_1 \cdot \text{n}_1)$ ### **BELT WIDTH AND PROFILE ESTIMATION** The belt width b should be calculated using the following formula $$b = (F_u \cdot c_s \cdot 10) / (F_{p \, \text{spec}} \cdot Z_m) \qquad C_s \qquad = \text{safety factor from page 11 table 4}$$ $$F_u \qquad = \text{from above calculation}$$ $$Z_m \qquad = \text{number of teeth in mesh on driver sprocket}$$ $$Z_m \qquad = [0,5 - \frac{4 \cdot p}{79 \cdot c} (Z_L - Z_s)] \cdot Z_s$$ $$= (\text{if calculated } Z_m > = 12 \text{ for an open-end application use } Z_m = 12)$$ $$= (\text{if calculated } Z_m > = 6 \text{ for a joined application use } Z_m = 6)$$ $$F_{p \, \text{spec}} = \text{transmittable force per tooth per unit width (see table on belt data pages)}$$ #### PRE-TENSIONING The suggested installation tension: $F_p = 2 \cdot F_u$ for linear and omega linear movement applications $F_p = F_u$ for conveyor applications ### **CORD CHECK** The maximum allowable tensile load of the belt pitch/width combination selected (see tables on belt data pages): max traction load of choosen belt $> \frac{F}{2} + (F_u \cdot C_s)$ ### SPROCKET AND IDLER DIAMETER CHECK Ensure that all selected pulley and idler diameters are equal to or greater than the minimum values specified in corresponding belt data page. ### **ELONGATION** When the belt is operating there will be an elongation proportional to max traction load: $\Delta I/_{00} = (F_{\mu} \cdot 4) / \text{max traction load}$ # **LINEAR MOTION CALCULATION EXAMPLE (OPEN-END BELT)** ### **MACHINE DATA** $C = 2.000 \, \text{mm}$ $d_1 = 76 \text{ mm}$ $n_1 = 300 RPM$ P = 1.8 KW low fluctuating load ### **CHOICE OF BELT PITCH AND SPROCKETS** According to the belt pitch selection table n.1 on page 10 considering the values of P and n₁, we select RPP8 belt. Then we consider the pulley diameter nearest to the requested value and the corresponding n. of teeth (see technical information on page 65). Therefore $Z_1 = 30$ teeth (with a pitch diameter of 76,4 mm). ### **CALCULATION OF THE EFFECTIVE TENSION** Since the drive power is known, F, can be calculated $$F_u = \frac{19,1 \cdot 10^6 \cdot P}{d_1 \cdot n_1} = \frac{19,1 \cdot 10^6 \cdot 1,8}{76,4 \cdot 300} = 1500 \text{ N}$$ ### **DETERMINATION OF THE BELT WIDTH** $$b = \frac{F_u \cdot C_s \cdot 10}{F_{p \text{ spec}} \cdot Z_m}$$ = from before (1500 N) = from page 11 table 4, for low fluctuating load C_s = 1,4 Z_m = given that driver pulley has 30 teeth and n. of teeth in mesh $$b = \frac{1500 \cdot 1,4 \cdot 10}{62 \cdot 12} = 28,2 \text{ mm}$$ = 15 but max Z_m is 12, then $Z_m = 12$ = 300 RPM (given) F_{n spec} = 62N / cm (refer page 64 at 300 RPM) Since the next closest width is 30 mm: 30 RPP8 is choosen. #### **PRE-TENSIONING** $$F_p = 2 \cdot F_u$$ $F_p = 3000 \text{ N}$ ### **CORD CHECK** From page 64, RPP8 pitch 30 mm wide: max traction load 4750 N max traction load > $$\frac{F_p}{2} + (F_u \cdot C_s)$$ $\frac{F_p}{2} + (F_u \cdot C_s) = 1500 + 1500 \cdot 1,4$ $$\frac{F_p}{2} + (F_u \cdot C_s) = 1500 + 1500 \cdot 1,4$$ 4750 N > 3600 N selected belt is acceptable. ### SPROCKET AND IDLER DIAMETER CHECK Ensure that all selected pulley and idler diameters are greater than or equal the minimum values specified on page 65. ### **ELONGATION** $$\Delta I'_{00} = \frac{F_u \cdot 4}{\text{max traction load}} = \frac{1500 \cdot 4}{4750} = 1,26 \text{ mm/m}$$ In the dynamic situations you will have an elongation of 1,26 mm per meter of operating belt. # **CONVEYOR BELT CALCULATION EXAMPLE (JOINED BELT)** ### **MACHINE DATA** C = 5.000 mm $d_1 = 100 \text{ mm}$ V = 0.5 m/s $a = 0.5 \text{ m/s}^2$ Guide in nylon Q = 4500 N low fluctuating load ### **CALCULATION OF THE EFFECTIVE TENSION** Since the mass is known, F_{μ} can be calculated $F_{\mu} = (m \cdot a) + (m \cdot g \cdot \mu)$ $$F_u = (m \cdot a) + (m \cdot g \cdot \mu)$$ value of μ according to table 3 on page $$11 = 0.35$$ $$F_u = (460 \cdot 0.5) + (460 \cdot 9.81 \cdot 0.35) = 1810 \text{ N}$$ $$m = Q/g = 4500 / 9,81 = 460 kg$$ ### **CHOICE OF BELT PITCH AND SPROCKETS** According to the belt selection table n. 2 on page 10, considering the values of F (for joined belts enter double of calculated F₁₁ in table 2), we select T 10. Then we consider the pulley diameter nearest to the requested value and the corresponding n. of teeth (see technical information page 35). Therefore $Z_1 = 32$ teeth (with a pitch diameter of 101,86 mm). ### **DETERMINATION OF THE BELT WIDTH** $$b = \frac{F_u \cdot C_s \cdot 10}{F_{p \text{ spec}} \cdot Z_m}$$ = from before (1810 N) Z_m = given that driver pulley has 32 teeth and n. of teeth in mesh = 16 but max Z_m for joined belt is 6, hence, $Z_m = 6$ $\begin{array}{l} -= 93,85 \text{ mm} \\ \hline \\ F_{p \, \text{spec}} = 45 \text{ N} / \text{ cm (refer page 34, at 100 RPM)} \end{array}$ Since the next closest width is 100 mm: 100 T10 is choosen. ## **PRE-TENSIONING** $$F_{p} = F_{u}$$ so $F_{p} = 1810 \text{ N}$ ### **CORD CHECK** From page 34, T10 pitch 100 mm wide joined: max traction load 5415 N max traction load $$> F_D + (F_U \cdot C_S)$$ $$Fp + (F_{...} \cdot C_{..}) = 1810 + (1810 \cdot 1,4)$$ 5415 N > 4344 N selected belt is acceptable. ### SPROCKET AND IDLER DIAMETER CHECK Checking technical data on page 35 for pulley and idlers, it can be seen that the drive has acceptable pulley diameters. ### **ELONGATION** $$\Delta I'_{00} = \frac{F_u \cdot 4}{\text{max traction load}} = \frac{1810 \cdot 4}{5415} = 1,33 \text{ mm/m}$$ In the dynamic situations you will have an elongation of 1,33 mm per meter of operating belt. # **CALCULATION PARAMETERS** # **BELT PITCH SELECTION** Table n. 2 Average values valid for standard steel cord. After belt selection, please check belt resistance on belt data page. # **CALCULATION PARAMETERS** | Sliding friction on dry surface Polyurethane / smooth steel μ = 0,5 Polyurethane / rough steel μ = 0,9 Polyurethane NET / smooth steel μ = 0,25 Polyurethane NET / rough steel μ = 0,35 Polyurethane NET / shooth steel μ = 0,35 Polyurethane NET / rough steel μ = 0,35 Polyurethane NET / rolon μ = 0,15 Polyurethane NET / roluminium μ = 0,015 Polyurethane NET / sluminium μ = 0,045 Rolling friction on dry surface Bearing Bearing μ = 0,015 Roller / PU Belt μ = 0,03 / 0,06 Bush | Table v. O. Frietien ecofficient | | | |
---|---|-----------|--------|------| | Polyurethane / smooth steel μ = 0,5 Polyurethane / rough steel μ = 0,7 Polyurethane NET / smooth steel μ = 0,25 Polyurethane NET / rough steel μ = 0,35 Polyurethane NET / abrasive steel μ = 0,035 Polyurethane NET / rylon μ = 0,15 Polyurethane NET / rylon μ = 0,15 Polyurethane NET / aluminium μ = 0,45 Rolling friction on dry surface Bearing Bearing μ = 0,03 / 0,06 Bush μ = 0,03 / 0,06 Bush μ = 0,015 Rolling friction on dry surface Table n. 4 - Safety factor Bearing μ = 0,03 / 0,06 Bush μ = 0,03 / 0,06 Bush μ = 0,015 Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load 1 Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 1,8 Line shafts 1,8 Paper machines: | Table n. 3 - Friction coefficient | | | | | Polyurethane / rough steel | | | _ | | | Polyurethane / abrasive steel | • | | | | | Polyurethane NFT / smooth steel μ = 0,25 Polyurethane NFT / rough steel μ = 0,35 Polyurethane NFT / abrasive steel μ = 0,35 Polyurethane NFT / nylon μ = 0,15 Polyurethane NFT / aluminium μ = 0,8 Polyurethane NFT / aluminium μ = 0,45 Rolling friction on dry surface Bearing μ = 0,015 Bearing μ = 0,03 / 0,06 Bush μ = 0,15 Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,6 Line shafts 1,6 Paper machines: 1,8 agitators, calenders, driers, winding frames, wilders, grinders 1,8 Machines for pottery and earthenware: 1,8 cutters, granulators, pumps, slicers, grinders 1,8 Machines for pottery and earthenware: 1,7 cutters, granulators, general 1,6 <td>•</td> <td>-</td> <td></td> <td></td> | • | - | | | | Polyurethane NFT / rough steel μ = 0,35 Polyurethane NFT / abrasive steel μ = 0,6 Polyurethane NFT / nylon μ = 0,15 Polyurethane NFT / nylon μ = 0,45 Polyurethane NFT / aluminium μ = 0,45 Rolling friction on dry surface Bearing μ = 0,03 / 0,06 Bearing μ = 0,03 / 0,06 Bush μ = 0,03 / 0,06 Bush μ = 0,15 Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: 1 1 Steady Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,8 1,8 1,8 1,8 1,6 1,8 1,8 1,6 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,6 1,8 1,8 1,6 1,8 1,8 1,6 1,8 1,8 1,6 1,8 1,6 1,8 1,6 1,8 1,6 1,8 1,6 1,8 1,6 1,8 1,8 | • | | | | | Polyurethane NFT / abrasive steel μ = 0,6 Polyurethane / nylon μ = 0,35 Polyurethane NFT / nylon μ = 0,45 Polyurethane NFT / aluminium μ = 0,45 Rolling friction on dry surface w = 0,015 Bearing μ = 0,03 / 0,06 Bush | • | • | | | | Polyurethane / nylon μ = 0,35 Polyurethane NFT / nylon μ = 0,15 Polyurethane NFT / aluminium μ = 0,45 Rolling friction on dry surface μ = 0,015 Bearing μ = 0,03 / 0,06 Bush μ = 0,03 / 0,06 Bush μ = 0,03 / 0,06 Bush μ = 0,015 Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,8 1,6 Line shafts 1,6 1,6 Paper machines: agitators, calenders, driers, winding frames, winders, grinders 1,8 Machines for pottery and earthenware: 1,8 cutters, granulators, granulators, granulators, granulators, granulators, granulators, granulators, and grantens 1,7 pulping machines: 2,0 Laundry machines: 1,6 woodworking machines: 1,7 lathes, ba | • | | | | | Polyurethane NFT / nylon μ = 0,15 Polyurethane / aluminium μ = 0,45 Rolling friction on dry surface Bearing μ = 0,015 Roller / PU Belt μ = 0,03 / 0,06 Bush μ = 0,015 Table n. 4 - Safety factor Table n. 4 - Safety factor Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,8 Line shafts 1,6 Paper machines: 1,6 agitators, calenders, driers, winding frames, 1,6 willows, Jordan machines, pumps, slicers, grinders 1,8 Machines for pottery and earthenware: cutters, granulators, 1,7 pulping machines: 2,0 Laundry machines: 1,8 Machines for rubber processing 1,8 | • | - | | | | Polyurethane / aluminium $\mu = 0.8$ Polyurethane NFT / aluminium $\mu = 0.45$ Rolling friction on dry surface Bearing $\mu = 0.015$ Roller / PU Belt $\mu = 0.03 / 0.06$ Bush $\mu = 0.15$ Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load $\mu = 0.000$ Low 1,4 Average 1,7 High 2 Relevators, hoists $\mu = 0.000$ Rollers, winding frames, agitators, calenders, driers, winding frames, agitators, calenders, driers, winding frames, agitators, calenders, driers, winding frames, agitators, granulators, pumps, slicers, grinders 1,8 Machines for pottery and earthenware: cutters, granulators, general 1,6 extractors, washers 1,8 Machines for rubber processing Machines, band saws, cutters, circular saws, planers, jointer 1,7 Printing machines: and saws, cutters, colders, magazine 1,6 Textile machines: warping machines, winders, spinners, twisting frames, looms 1,7 Printing machines, winders, spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, grinding machines, gears cutters, boring machines 1,6 millers, planers, grinding machines 1,7 Gronveyors: hoists, light package 1,3 apon bucket, elevator 1,8 a | • | | | | | Polyurethane NFT / aluminium $\mu = 0,45$ Rolling friction on dry surface Bearing $\mu = 0,015$ Roller / PU Belt $\mu = 0,03 / 0,06$ Bush $\mu = 0,15$ Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load $\mu = 0,03 / 0,06$ Steady Load $\mu = 0,03 / 0,06$ Shock Lo | • | | | | | Rolling friction on dry surface μ = 0,015 Roller / PU Belt μ = 0,03 / 0,06 Bush μ = 0,15 Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,8 Line shafts 1,6 Paper machines: 1,6 agitators, calenders, driers, winding frames, 1,6 willows, Jordan machines, pumps, slicers, grinders 1,8 Machines for pottery and earthenware: 1,7 cutters, granulators, 1,7 pulping machines 2,0 Laundry machines: 1,8 Machines for pottery and earthenware: 1,8 cutters, granulators, 1,7 pulping machines: 2,0 Laundry machines: 1,8 Machines for rubber processing 1,8 Machines for rubber processing 1,7 Voodworking machines; 1,7 I | · | • | | | | Bearing μ = 0,015 Roller / PU Belt μ = 0,03 / 0,06 Bush μ = 0,15 Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,8 1,6 Line shafts 1,6 1,6 Paper machines: 1,6 1,6 willows, Jordan machines, pumps, slicers, grinders 1,8 wachines for pottery and earthenware: 2,0 cutters, granulators, 1,7 pulping machines: 2,0 Laundry machines: 1,8 Machines for rubber processing 1,8 Machines for rubber processing 1,7 williams, band saws, | · | μ – υ, | ,40 | | | Roller / PU Belt Bush Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Machines for
pottery and earthenware: cutters, granulators, pulping machines: general 1,8 Machines for rubber processing 1,7 Circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, 1,7 spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, grinding machines, gears cutters, boring machines 1,6 millers, planers, grinding machines 0,1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 | - | 0 | 015 | | | Bush Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load | <u> </u> | • | | 0.06 | | Table n. 4 - Safety factor The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load Shock Load Low Average 1,7 High Righ Elevators, hoists Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Machines for pottery and earthenware: cutters, granulators, pulping machines: agnachines: agnations, pulping machines: agnachines: agnachines: cutters, granulators, pulping machines Laundry machines: agnachines: agnachines or pottery and earthenware: cutters, granulators, pulping machines Laundry machines: agnachines: agnachines: agnachines or rubber processing Laundry machines: agnachines; | | - | | 0,06 | | The choice of the Safety factor's, depends on the operating conditions. The following table shows the value to be used: Steady Load Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders 1,8 Machines for pottery and earthenware: cutters, granulators, pulping machines: question of the Safety and earthenware in the state of stat | | $\mu = 0$ | ,15 | | | The following table shows the value to be used: 1 Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,8 Line shafts 1,6 Paper machines: 1,6 agitators, calenders, driers, winding frames, 1,6 willows, Jordan machines: 1,8 Machines for pottery and earthenware: 1,8 cutters, granulators, 1,7 pulping machines 2,0 Laundry machines: 2,0 Laundry machines: 1,8 Machines for rubber processing 1,8 Woodworking machines: 1,8 lathes, band saws, cutters, 1,7 circular saws, planers, jointer 1,7 Printing machinery: 1,7 rotatle machines: 1,7 warping machines, winders, 1,7 spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, 1,7 tread cutting machines, gears cutters, boring machines <td< td=""><td>-</td><td></td><td></td><td></td></td<> | - | | | | | Steady Load 1 Shock Load Low 1,4 Average 1,7 High 2 Elevators, hoists 1,8 Line shafts 1,6 Paper machines: 1,6 agitators, calenders, driers, winding frames, 1,6 willows, Jordan machines, pumps, slicers, grinders 1,8 Machines for pottery and earthenware: 1,7 cutters, granulators, 1,7 pulping machines: 2,0 Laundry machines: 2,0 Laundry machines: 1,8 Machines for rubber processing 1,8 Woodworking machines: 1,8 Woodworking machines: 1,7 lathes, band saws, cutters, 1,7 circular saws, planers, jointer 1,7 Printing machinery: 1,7 rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: 1,7 warping machines, winders, 1,8 Machines tools: drilling machines, lathes, 1,7 tread cutting machines, gears cutters, boring | | ing co | nditio | ons. | | Shock Load | | | | | | Elevators, hoists Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Machines for pottery and earthenware: cutters, granulators, pulping machines Laundry machines: general extractors, washers Machines for rubber processing Noodworking machines: lathes, band saws, cutters, circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine Textile machines: warping machines, winders, spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines millers, planers, grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight apron bucket, elevator screw 1,8 | • | | | | | Elevators, hoists Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Lathes, for pottery and earthenware: cutters, granulators, pulping machines 2,0 Laundry machines: general extractors, washers 1,8 Machines for rubber processing Noodworking machines: lathes, band saws, cutters, circular saws, planers, jointer Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine Textile machines: warping machines, winders, spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines millers, planers, grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight apron bucket, elevator screw 1,8 | Shock Load | | | | | Elevators, hoists Line shafts 1,6 Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Machines for pottery and earthenware: cutters, granulators, pulping machines Laundry machines: general extractors, washers Machines for rubber processing Machines for rubber processing Woodworking machines: lathes, band saws, cutters, circular saws, planers, jointer Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, spinners, twisting frames, looms Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines millers, planers, grinding machines Conveyors: hoists, light package oven screw fleight apron bucket, elevator screw 1,8 | | | ige | | | Line shafts Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Machines for pottery and earthenware: cutters, granulators, pulping machines Laundry machines: general extractors, washers Machines for rubber processing Machines for rubber processing Woodworking machines: lathes, band saws, cutters, circular saws, planers, jointer Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine Textile machines: warping machines, winders, spinners, twisting frames, looms Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines millers, planers, grinding machines Conveyors: hoists, light package oven screw fleight apron bucket, elevator screw 1,8 | | High | | | | Paper machines: agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Machines for pottery and earthenware: cutters, granulators, pulping machines 2,0 Laundry machines: general extractors, washers 1,8 Machines for rubber processing 1,8 Woodworking machines: lathes, band saws, cutters, circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines millers, planers, grinding machines Conveyors: hoists, light package oven screw fleight apron bucket, elevator screw 1,8 | | | | | | agitators, calenders, driers, winding frames, willows, Jordan machines, pumps, slicers, grinders Machines for pottery and earthenware: cutters, granulators, pulping machines: 2,0 Laundry machines: general extractors, washers 1,8 Machines for rubber processing 1,8 Woodworking machines: lathes, band saws, cutters, circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines millers, planers, grinding machines Conveyors: hoists, light package oven screw fleight apron bucket, elevator screw 1,8 | | | | 1,6 | | willows, Jordan machines, pumps, slicers, grinders1,8Machines for pottery and earthenware:1,7cutters, granulators,1,7pulping machines2,0Laundry machines: general1,6extractors, washers1,8Machines for rubber processing1,8Woodworking machines:1,7lathes, band saws, cutters,1,7circular saws, planers, jointer1,7Printing machinery:1,6Textile machines:1,6warping machines, winders,1,7spinners, twisting frames, looms1,8Machines tools: drilling machines, lathes,1,7tread cutting machines, gears cutters, boring machines1,6millers, planers,1,7grinding machines1,7Conveyors:1,7hoists, light package1,3oven screw fleight1,8apron bucket, elevator1,8screw1,8 | | | | | | Machines for pottery and earthenware:cutters, granulators,1,7pulping machines2,0Laundry machines: general1,6extractors, washers1,8Machines for rubber processing1,8Woodworking machines:1,7lathes, band saws, cutters,1,7circular saws, planers, jointer1,7Printing machinery:1,6rotary, newspaper, linotype, cutters, folders, magazine1,6Textile machines:1,7warping machines, winders,1,7spinners, twisting frames, looms1,8Machines tools: drilling machines, lathes,1,6millers, planers,1,7grinding machines1,6millers, planers,1,7Gonveyors:1,7hoists, light package1,3oven screw fleight1,8apron bucket, elevator1,8screw1,8 | | | | | | cutters, granulators, pulping machines 2,0 Laundry machines: general 2,0 extractors, washers 1,8 Machines for rubber processing 1,8 Woodworking machines:
lathes, band saws, cutters, circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 | | | | 1,8 | | pulping machines 2,0 Laundry machines: general 1,6 extractors, washers 1,8 Machines for rubber processing 1,8 Woodworking machines: lathes, band saws, cutters, 1,7 circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, 1,7 spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | | | | | | Laundry machines:1,6extractors, washers1,8Machines for rubber processing1,8Woodworking machines:1,7lathes, band saws, cutters,1,7circular saws, planers, jointer1,7Printing machinery:rotary, newspaper, linotype, cutters, folders, magazine1,6Textile machines:warping machines, winders,1,7spinners, twisting frames, looms1,8Machines tools:drilling machines, lathes,tread cutting machines, gears cutters, boring machines1,6millers, planers,1,7grinding machines1,7Conveyors:1,7hoists, light package1,3oven screw fleight1,8apron bucket, elevator1,8screw1,8 | - | | | | | extractors, washers 1,8 Machines for rubber processing 1,8 Woodworking machines: lathes, band saws, cutters, 1,7 circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, 1,7 spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | pulping machines | | | 2,0 | | Machines for rubber processing1,8Woodworking machines:1,7lathes, band saws, cutters,1,7circular saws, planers, jointer1,7Printing machinery:rotary, newspaper, linotype, cutters, folders, magazine1,6Textile machines:warping machines, winders,1,7spinners, twisting frames, looms1,8Machines tools: drilling machines, lathes,tread cutting machines, gears cutters, boring machines1,6millers, planers,1,7grinding machines1,7Conveyors:1,3hoists, light package1,3oven screw fleight1,8apron bucket, elevator1,8screw1,8 | Laundry machines: general | | | 1,6 | | Woodworking machines: lathes, band saws, cutters, 1,7 circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, 1,7 spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | extractors, washers | | | 1,8 | | lathes, band saws, cutters, circular saws, planers, jointer 7,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 7,6 Textile machines: warping machines, winders, spinners, twisting frames, looms 7,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 7,7 grinding machines 7,7 Conveyors: hoists, light package 7,3 oven screw fleight 7,8 apron bucket, elevator 7,8 | Machines for rubber processing | | | 1,8 | | circular saws, planers, jointer 1,7 Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, 1,7 spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | Woodworking machines: | | | | | Printing machinery: rotary, newspaper, linotype, cutters, folders, magazine 1,6 Textile machines: warping machines, winders, spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | lathes, band saws, cutters, | | | 1,7 | | rotary, newspaper, linotype, cutters, folders, magazine Textile machines: warping machines, winders, spinners, twisting frames, looms Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 | circular saws, planers, jointer | | | 1,7 | | Textile machines: warping machines, winders, spinners, twisting frames, looms Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines nillers, planers, grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 5,7 1,7 1,7 1,7 1,8 1,8 1,8 | Printing machinery: | | | | | warping machines, winders, spinners, twisting frames, looms Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines nillers, planers, grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 | rotary, newspaper, linotype, cutters, folders, magazine | | | 1,6 | | spinners, twisting frames, looms 1,8 Machines tools: drilling machines, lathes, tread cutting machines, gears cutters, boring machines 1,6 millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | Textile machines: | | | | | Machines tools: drilling machines, lathes,tread cutting machines, gears cutters, boring machines1,6millers, planers,1,7grinding machines1,7Conveyors:hoists, light package1,3oven screw fleight1,8apron bucket, elevator1,8screw1,8 | warping machines, winders, | | | 1,7 | | tread cutting machines, gears cutters, boring machines 1,6 millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | spinners, twisting frames, looms | | | 1,8 | | millers, planers, 1,7 grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | Machines tools: drilling machines, lathes, | | | | | grinding machines 1,7 Conveyors: hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | tread cutting machines, gears cutters, boring machines | | | 1,6 | | Conveyors:hoists, light package1,3oven screw fleight1,8apron bucket, elevator1,8screw1,8 | millers, planers, | | | 1,7 | | hoists, light package 1,3 oven screw fleight 1,8 apron bucket, elevator 1,8 screw 1,8 | grinding machines | | | 1,7 | | oven screw fleight1,8apron bucket, elevator1,8screw1,8 | Conveyors: | | | | | apron bucket, elevator 1,8 screw 1,8 | hoists, light package | | | 1,3 | | apron bucket, elevator 1,8 screw 1,8 | oven screw fleight | | | 1,8 | | screw 1,8 | - | | | 1,8 | | | | | | | | | Brick machinery | | | | ## **BELT INSTALLATION** A major difficulty installing transmission belt is to achieve correct belt tension. Lifetime of support bearings and transmission belts and therefore reliability of the complete system largely depends on an optimally adjusted belt tension. Pretension is the force needed to put tension into the system to avoid the belt jumping on the pulleys as in the example below: ### Not correct belt installation For a correct system installation, all applications with Megalinear belt can be summarised according following two sketches: ### 1) Linear and omega linear motion belt ### 2) Conveyor belt F_p = pretension F" = peripheral force (see calculation pag. 8/9) r = pulley radius ### **PROCEDURE TO MEASURE** The procedure to measure the tension of the belt is to use a Belt Tension Gauging Equipement. This device consists of a small sensing head which is held across the belt to be measured. The belt is then tapped to induce the belt to vibrate at its natural frequency. The vibrations are detected and the frequency of vibration is then displayed on the measuring unit. The relation between belt static tension (T_s) and frequency of vibration (f_s) may be calculated using the following formula: $$f = \frac{1}{2t} \cdot \sqrt{\frac{T_s}{m}}$$ or $T_s = 4 \cdot m \cdot t^2 \cdot f^2$ Where: T_s = static tension (N) f = Frequency of vibration in Hertz (Hz) m = Belt mass per unit length (kg/m) t = Free belt span length in meters (m) # **BELT INSTALLATION** For a correct system functioning and to increase belt life, it is necessary a correct pulley installation: pulleys has to be parallel and aligned as shown in drawing 1 (correct configuration). If pulleys are not parallel as in drawing 2, belt could fall during functioning and this can provoke damages to complete equipment. To grant a correct belt running, α and Δx must be as smaller as possible. For more information, please contact our technical staff. In omega application to grant good mesh between pulley and teeth and to respect belt flexibility avoiding excessive stress on cords, distance d (as drawing 4) has to be: d = 4 · belt width Suggested angle 120° Moreover for a good drive work, it is suggested to check belt straigthness as follows: | Belt width | Testing belt length | Maximum suggested bending (A) | |---------------|---------------------
-------------------------------| | Till to 20 mm | 1 m | 3 mm | | Over 20 mm | 2 m | 4 mm | # **MEGALINEAR HG OPEN-END** ## **BELT CHARACTERISTICS** | STANDARD WIDTHS (inch) | 150 | 200 | 300 | 400 | 600 | |------------------------|------|------|------|-------|-------| | STANDARD WIDTHS (mm) | 38,1 | 50,8 | 76,2 | 101,6 | 152,4 | | Weight (gr/m) | 230 | 285 | 395 | 500 | 800 | Standard compound: white Polyurethane thermoplastic 92 ShA Standard back cover: **none**Standard tooth cover: **none** Standard cords: S and Z torsion zinked steel Standard width tolerance: +/- 0,5 mm Standard length tolerance: +/- 0,8 mm/m Standard roll length: 100 m Belt options on request with minimum quantity: Nylon fabric back Nylon fabric teeth* Antistatic nylon fabric Transparent FDA compound Cleats Different back coating materials see page 120 * Nylon fabric teeth including guide (fabric on complete width) is standard version. Nylon fabric teeth excluding guide (2 fabric strips on teeth only) is only on request. # **TOOTH RESISTANCE** | RPM (1/min) | 0 | 20 | 40 | 60 | 80 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 | 8000 | |----------------------------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | F _{p spec} (N/cm) | 44 | 43 | 42 | 41 | 40 | 39 | 36 | 34 | 33 | 31 | 29 | 27 | 24 | 22 | 19 | 17 | 16 | 12 | Minimum suggested number of teeth in clamp for linear movement: 7 ## TRACTION RESISTANCE | | Belt width (inch) | 150 | 200 | 300 | 400 | 600 | |--------|--------------------------|-------|-------|-------|-------|-------| | Steel | Max Traction Load (N) | 3675 | 5040 | 8065 | 11760 | 11520 | | | Breaking Strength (N) | 14700 | 20160 | 30660 | 41160 | 40320 | | | Elongation at MTL (mm/m) | 4 | 4 | 4 | 4 | 4 | | Kevlar | Max Traction Load (N) | 3270 | 4685 | 7165 | 10475 | 14360 | | | Breaking Strength (N) | 13095 | 17805 | 27235 | 36665 | 50270 | | | Elongation at MTL (mm/m) | 8 | 8 | 8 | 8 | 8 | Average values # **MEGALINEAR HG OPEN-END** # **FLEXION RESISTANCE** | | Z _{min} | Z _{min} | Idler min dia (mm) | Z _{min} | Idler min dia (mm) | |----------------------|------------------|------------------|--------------------|------------------|--------------------| | Standard steel cords | 20 | 22 | 160 | 20 | 80 | | Kevlar cords | 20 | 22 | 160 | 20 | 80 | # **JOINED BELT INFORMATION** - Minimum splice length 900 mm - Traction and tooth resistances = 50% less than open-end - Joined belt can be used only in conveyor systems - Rolls with NFT and NFB can be joined too - Minimum diameters according above table - For coated belts, minimum diameters on page 120 | N°
Teeth | Dp | De | N°
Teeth | Dp | De | |-------------|--------|--------|-------------|--------|--------| | 20 | 80,85 | 79,48 | 34 | 137,45 | 136,08 | | 22 | 88,94 | 87,57 | 36 | 145,53 | 144,16 | | 24 | 97,02 | 95,65 | 38 | 153,62 | 152,25 | | 26 | 105,11 | 103,74 | 40 | 161,70 | 160,33 | | 28 | 113,19 | 111,82 | 44 | 177,87 | 176,50 | | 30 | 121,28 | 119,91 | 48 | 194,04 | 192,67 | | 32 | 129,36 | 127,99 | 60 | 242,55 | 241,18 | # **MEGALINEAR TG5 OPEN-END** # **BELT CHARACTERISTICS** | STANDARD WIDTHS (mm) | 25 | 32 | 50 | |----------------------|----|----|-----| | Weight (gr/m) | 70 | 85 | 120 | Standard compound: white Polyurethane thermoplastic 92 ShA Standard back cover: **none**Standard tooth cover: **none** Standard cords: S and Z torsion zinked steel Standard width tolerance: +/- 0,5 mm Standard length tolerance: +/- 0,8 mm/m Standard roll length: 100 m Belt options on request with minimum quantity: Nylon fabric back Nylon fabric teeth* Antistatic nylon fabric Transparent FDA compound Cleats Different back coating materials see page 120 * Nylon fabric teeth excluding guide (2 fabric strips on teeth only). # **TOOTH RESISTANCE** | RPM (1/min) | 0 | 20 | 40 | 60 | 80 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 | 8000 | |----------------------------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | F _{p spec} (N/cm) | 24 | 23 | 23 | 22 | 22 | 22 | 20 | 19 | 19 | 18 | 17 | 16 | 15 | 14 | 12 | 11 | 11 | 9 | Minimum suggested number of teeth in clamp for linear movement: 7 # TRACTION RESISTANCE | | Belt width (mm) | 25 | 32 | 50 | |--------|--------------------------|------|-------|-------| | Steel | Max Traction Load (N) | 840 | 1060 | 1750 | | | Breaking Strength (N) | 3375 | 4250 | 7000 | | | Elongation at MTL (mm/m) | 4 | 4 | 4 | | Kevlar | Max Traction Load (N) | 2225 | 2800 | 4615 | | | Breaking Strength (N) | 8900 | 11210 | 18465 | | | Elongation at MTL (mm/m) | 8 | 8 | 8 | Average values # **MEGALINEAR TG5 OPEN-END** # **FLEXION RESISTANCE** | | Z _{min} | Z _{min} | Idler min dia (mm) | Z _{min} | Idler min dia (mm) | |----------------------|-------------------------|------------------|--------------------|------------------|--------------------| | Standard steel cords | 25 | 28 | 80 | 25 | 60 | | Kevlar cords | 25 | 28 | 80 | 25 | 60 | # **JOINED BELT INFORMATION** - Minimum splice length 900 mm - Traction and tooth resistances = 50% less than open-end - Joined belt can be used only in conveyor systems - Rolls with NFT and NFB can be joined too - Minimum diameters according above table - For coated belts, minimum diameters on page 120 | N°
Teeth | Dp | De | N°
Teeth | Dp | De | |-------------|-------|-------|-------------|-------|-------| | 25 | 39,79 | 38,96 | 36 | 57,30 | 56,47 | | 27 | 42,97 | 42,14 | 40 | 63,66 | 62,93 | | 30 | 47,75 | 46,92 | 48 | 76,39 | 75,57 | | 32 | 50,93 | 50,10 | 60 | 95,49 | 94,67 | # **MEGALINEAR TG10 OPEN-END** # **BELT CHARACTERISTICS** | STANDARD WIDTHS (mm) | 25TG10K13 | 32TG10K13 | 50TG10 к13 | 75ТG10 к13 | 100TG10K13 | 50ТG10 к6 | |----------------------|-----------|-----------|-------------------|-------------------|------------|------------------| | Weight (gr/m) | 190 | 250 | 290 | 390 | 495 | 240 | Standard compound: white Polyurethane thermoplastic 92 ShA Standard back cover: none Standard tooth cover: none Standard cords: S and Z torsion zinked steel Standard width tolerance: +/- 0,5 mm Standard length tolerance: +/- 0,8 mm/m Standard roll length: 100 m Belt options on request with minimum quantity: Nylon fabric back Nylon fabric teeth* Antistatic nylon fabric Transparent FDA compound AVAFC 60/70/85 ShA Cleats Different back coating materials see page 120 *K13 - Nylon fabric teeth excluding guide (2 fabric strips on teeth only) is standard version. Nylon fabric teeth including guide (fabric on complete width) is only on request. K6 - Nylon fabric teeth including guide (fabric on complete width) is standard version. Nylon fabric teeth excluding guide (2 fabric strips on teeth only) is only on request. ## **TOOTH RESISTANCE** | RPM (1/min) | 0 | 20 | 40 | 60 | 80 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 | 8000 | |----------------------------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | F _{p spec} (N/cm) | 51 | 49 | 48 | 47 | 46 | 45 | 41 | 39 | 37 | 36 | 33 | 31 | 28 | 25 | 22 | 20 | 18 | 14 | Minimum suggested number of teeth in clamp for linear movement: 7 # TRACTION RESISTANCE | | Belt width (mm) | 25TG10K13 | 32TG10K13 | 50TG10K13 | 75TG10K13 | 100TG10K13 | 50TG10K6 | |-----------|--------------------------|-----------|----------------|-----------|-----------|------------|----------| | Steel | Max Traction Load (N) | 2415 | 3045 | 5040 | 8065 | 10830 | 5040 | | | Breaking Strength (N) | 9660 | 12180 | 20160 | 30660 | 41160 | 20160 | | | Elongation at MTL (mm/m) | 4 | 4 | 4 | 4 | 4 | 4 | | Kevlar | Max Traction Load (N) | 2095 | 2615 | 4450 | 7165 | 9645 | 4450 | | | Breaking Strength (N) | 8380 | 10475 | 17805 | 27235 | 36665 | 17805 | | | Elongation at MTL (mm/m) | 8 | 8 | 8 | 8 | 8 | 8 | | Stainless | Max Traction Load (N) | 2190 | 2760 | 4570 | - | - | 4570 | | | Breaking Strength (N) | 8760 | 11045 | 18285 | - | - | 18285 | | | Elongation at MTL (mm/m) | 3,8 | 3,8 | 3,8 | - | - | 3,8 | | | | | Average values | | | | | # **MEGALINEAR TG10 OPEN-END** # **FLEXION RESISTANCE** | | Z _{min} | Z _{min} | Idler min dia (mm) | Z _{min} | Idler min dia (mm) | |-----------------------|-------------------------|------------------|--------------------|------------------|--------------------| | Standard steel cords | 25 | 28 | 80 | 25 | 80 | | Kevlar cords | 25 | 28 | 80 | 25 | 80 | | Stainless steel cords | 31 | 34 | 90 | 31 | 90 | # **JOINED BELT INFORMATION** - Minimum splice length 900 mm - Traction and tooth resistances = 50% less than open-end - Joined belt can be used only in conveyor systems - Rolls with NFT, NFB, and AVAFC can be joined too - Minimum diameters according above table - For coated belts, minimum diameters on page 120 | N°
Teeth | Dp | De | |-------------|--------|--------| | 25 | 79,58 | 77,73 | | 27 | 85,94 | 84,10 | | 30 | 95,49 | 93,65 | | 32 | 101,86 | 100,01 | | 36 | 114,59 | 112,74 | | 40 | 127,32 | 125,48 | | 48 | 152,79 | 150,94 | | 60 | 190,99 | 189,14 | | | | | # **MEGALINEAR TG20 OPEN-END** # **BELT CHARACTERISTICS** | STANDARD WIDTHS (mm) | 50 | 75 | 100 | | |----------------------|-----|-----|-----|--| | Weight (gr/m) | 375 | 590 | 770 | | Standard compound: white Polyurethane thermoplastic 92 ShA Standard back cover: **none**Standard tooth cover: **none** Standard cords: S and Z torsion zinked steel Standard width tolerance: +/- 1 mm Standard length tolerance: +/- 0,8 mm/m Standard roll length: 100 m Belt options on request with minimum quantity: Nylon fabric back Nylon fabric teeth* Antistatic nylon fabric Transparent FDA compound Cleats Different back coating materials see page 120 * Nylon fabric teeth including guide (fabric on complete width) is standard version. Nylon fabric teeth excluding guide (2 fabric strips on teeth only) is
only on request. # **TOOTH RESISTANCE** | RPM (1/min) | 0 | 20 | 40 | 60 | 80 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 | |----------------------------|-----|----|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | F _{p spec} (N/cm) | 102 | 98 | 95 | 93 | 91 | 89 | 81 | 76 | 72 | 68 | 62 | 57 | 50 | 45 | 38 | 33 | 29 | Minimum suggested number of teeth in clamp for linear movement: 7 ## TRACTION RESISTANCE | | Belt width (mm) | 50 | 75 | 100 | |--------|--------------------------|-------|-------|-------| | Steel | Max Traction Load (N) | 8075 | 13000 | 17500 | | | Breaking Strength (N) | 32300 | 49400 | 66500 | | | Elongation at MTL (mm/m) | 4 | 4 | 4 | | Kevlar | Max Traction Load (N) | 10935 | 17715 | 23915 | | | Breaking Strength (N) | 43755 | 67315 | 90875 | | | Elongation at MTL (mm/m) | 8 | 8 | 8 | # **MEGALINEAR TG20 OPEN-END** # **FLEXION RESISTANCE** | | Z _{min} | Z _{min} | Idler min dia (mm) | Z _{min} | Idler min dia (mm) | |----------------------|------------------|------------------|--------------------|------------------|--------------------| | Standard steel cords | 30 | 33 | 140 | 30 | 120 | | Kevlar cords | 30 | 33 | 140 | 30 | 120 | # **JOINED BELT INFORMATION** - Minimum splice length 900 mm - Traction and tooth resistances = 50% less than open-end - Joined belt can be used only in conveyor systems - Rolls with NFT and NFB can be joined too - Minimum diameters according above table - For coated belts, minimum diameters on page 120 | N°
Teeth | Dp | De | N°
Teeth | Dp | De | |-------------|--------|--------|-------------|--------|--------| | 30 | 190,99 | 188,13 | 40 | 254,65 | 251,80 | | 32 | 203,72 | 200,86 | 48 | 305,58 | 302,73 | | 36 | 229.18 | 226.33 | 60 | 381.97 | 379.12 | # **MEGALINEAR ATG5 OPEN-END** # **BELT CHARACTERISTICS** | STANDARD WIDTHS (mm) | 25 | 32 | 50 | |----------------------|----|-----|-----| | Weight (gr/m) | 95 | 120 | 180 | Standard compound: white Polyurethane thermoplastic 92 ShA Standard back cover: **none**Standard tooth cover: **none** Standard cords: S and Z torsion zinked steel Standard width tolerance: +/- 1 mm Standard length tolerance: +/- 0,8 mm/m Standard roll length: 100 m Belt options on request with minimum quantity: Nylon fabric back Nylon fabric teeth* Antistatic nylon fabric Transparent FDA compound AVAFC 60/70/85 ShA Cleats Different back coating materials see page 120 * Nylon fabric teeth excluding guide (2 fabric strips on teeth only). # **TOOTH RESISTANCE** | RPM (1/min) | 0 | 20 | 40 | 60 | 80 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 | 8000 | |----------------------------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | F _{p spec} (N/cm) | 35 | 35 | 35 | 34 | 34 | 34 | 32 | 31 | 30 | 29 | 27 | 26 | 24 | 22 | 19 | 18 | 16 | 13 | Minimum suggested number of teeth in clamp for linear movement: 7 # TRACTION RESISTANCE | | Belt width (mm) | 25 | 32 | 50 | |-------|--------------------------|------|------|-------| | Steel | Max Traction Load (N) | 1805 | 2275 | 3750 | | | Breaking Strength (N) | 7235 | 9110 | 15005 | | | Elongation at MTL (mm/m) | 4 | 4 | 4 | | | | | | | Average values # **MEGALINEAR ATG5 OPEN-END** # **FLEXION RESISTANCE** | | Z _{min} | Z _{min} | Idler min dia (mm) | Z _{min} | Idler min dia (mm) | |----------------------|------------------|------------------|--------------------|------------------|--------------------| | Standard steel cords | 25 | 28 | 100 | 25 | 80 | # **JOINED BELT INFORMATION** - Minimum splice length 900 mm - Traction and tooth resistances = 50% less than open-end - Joined belt can be used only in conveyor systems - Rolls with NFT, NFB, and AVAFC can be joined too - Minimum diameters according above table - For coated belts, minimum diameters on page 120 | N°
Teeth | Dp | De | N°
Teeth | Dp | De | |-------------|-------|-------|-------------|-------|-------| | 25 | 39,79 | 38,96 | 36 | 57,30 | 56,47 | | 27 | 42,97 | 42,14 | 40 | 63,66 | 62,93 | | 30 | 47,75 | 46,92 | 48 | 76,39 | 75,57 | | 32 | 50,93 | 50,10 | 60 | 95,49 | 94,67 | ## **MEGALINEAR ATG10 OPEN-END** # **BELT CHARACTERISTICS** **STANDARD WIDTHS** 25 ATG10K13 32 ATG10K13 50 ATG10K13 75 ATG10K13 100 ATG10K13 150 ATG10K13 50 ATG10K6 (mm) Weight (gr/m) 180 230 330 290 465 620 930 Standard compound: white Polyurethane thermoplastic 92 ShA Standard back cover: **none**Standard tooth cover: **none** Standard cords: S and Z torsion zinked steel Standard width tolerance: +/- 0,5 mm Standard length tolerance: +/- 0,8 mm/m Standard roll length: 100 m Belt options on request with minimum quantity: Nylon fabric back Nylon fabric teeth* Antistatic nylon fabric Transparent FDA compound AVAFC 60/70/85 ShA Cleats Different back coating materials see page 120 *K13 - Nylon fabric teeth excluding guide (2 fabric strips on teeth only) is standard version. Nylon fabric teeth including guide (fabric on complete width) is only on request. K6 - Nylon fabric teeth including guide (fabric on complete width) is standard version. Nylon fabric teeth excluding guide (2 fabric strips on teeth only) is only on request. # **TOOTH RESISTANCE** | RPM (1/min) | 0 | 20 | 40 | 60 | 80 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 | 8000 | |----------------------------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | F _{n snec} (N/cm) | 74 | 72 | 71 | 71 | 70 | 69 | 65 | 62 | 60 | 58 | 53 | 50 | 44 | 40 | 35 | 30 | 27 | 20 | Minimum suggested number of teeth in clamp for linear movement: 7 ### TRACTION RESISTANCE | | Belt width (mm) | 25
ATG10K13 | 32
ATG10K13 | 50
ATG10K13 | 75
ATG10K13 | 100
ATG10K13 | 150
ATG10K13 | 50
ATG10K6 | |----------------|--------------------------|----------------|----------------|----------------|----------------|-----------------|-----------------|---------------| | Steel | Max Traction Load (N) | 3800 | 4750 | 8075 | 13000 | 17500 | 28225 | 8075 | | | Breaking Strength (N) | 15200 | 19000 | 32300 | 49400 | 66500 | 98800 | 32300 | | | Elongation at MTL (mm/m) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Kevlar | Max Traction Load (N) | 5045 | 6730 | 10935 | 17715 | 23915 | 39425 | 10935 | | | Breaking Strength (N) | 20195 | 26925 | 43755 | 67315 | 90875 | 138000 | 43755 | | | Elongation at MTL (mm/m) | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | HP | Max Traction Load (N) | 5190 | 6920 | 11245 | 18210 | 24580 | 40530 | - | | | Breaking Strength (N) | 20760 | 27680 | 44980 | 69200 | 93420 | 141860 | - | | | Elongation at MTL (mm/m) | 4 | 4 | 4 | 4 | 4 | 4 | - | | Stain-
less | Max Traction Load (N) | 3175 | 3970 | 6745 | - | - | - | 6745 | | | Breaking Strength (N) | 12700 | 15880 | 26995 | - | - | - | 26995 | | | Elongation at MTL (mm/m) | 3,8 | 3,8 | 3,8 | - | - | - | 3,8 | | | | | Average valu | ues | | | | | # **MEGALINEAR ATG10 OPEN-END** # **FLEXION RESISTANCE** | | Z _{min} | Z _{min} | Idler min dia (mm) | Z _{min} | Idler min dia (mm) | |-----------------------|------------------|------------------|--------------------|------------------|--------------------| | Standard steel cords | 25 | 28 | 120 | 25 | 80 | | Kevlar cords | 25 | 28 | 120 | 25 | 100 | | High Power cords | 40 | 40 | 160 | 40 | 120 | | Stainless steel cords | 32 | 34 | 130 | 32 | 130 | # **JOINED BELT INFORMATION** - Minimum splice length 900 mm - Traction and tooth resistances = 50% less than open-end - Joined belt can be used only in conveyor systems - Rolls with NFT, NFB, and AVAFC can be joined too - Minimum diameters according above table - For coated belts, minimum diameters on page 120 | N°
Teeth | Dp | De | |-------------|--------|--------| | 25 | 79,58 | 77,73 | | 27 | 85,94 | 84,10 | | 30 | 95,49 | 93,65 | | 32 | 101,86 | 100,01 | | 36 | 114,59 | 112,74 | | 40 | 127,32 | 125,48 | | 48 | 152,79 | 150,94 | | 60 | 190,99 | 189,14 | | | | | # **MEGALINEAR ATG20 OPEN-END** # **BELT CHARACTERISTICS** | STANDARD WIDTHS (mm) | 75 | 150 | |----------------------|-----|------| | eight (gr/m) | 795 | 1500 | Standard compound: white Polyurethane thermoplastic 92 ShA Standard back cover: **none**Standard tooth cover: **none** Standard cords: S and Z torsion zinked steel Standard width tolerance: +/- 1 mm Standard length tolerance: +/- 0,8 mm/m Standard roll length: 100 m Belt options on request with minimum quantity: Nylon fabric back Nylon fabric teeth* Antistatic nylon fabric Transparent FDA compound AVAFC 60/70/85 ShA Cleats Different back coating materials see page 120 * Nylon fabric teeth excluding guide (2 fabric strips on teeth only). # **TOOTH RESISTANCE** | RPM (1/min) | 0 | 20 | 40 | 60 | 80 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 | |----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | F _{p spec} (N/cm) | 147 | 144 | 142 | 139 | 137 | 135 | 126 | 119 | 112 | 107 | 97 | 88 | 76 | 67 | 58 | 43 | 35 | Minimum suggested number of teeth in clamp for linear movement: 7 # TRACTION RESISTANCE | | Belt width (mm) | 75 | 150 | |-------|--------------------------|---------|--------| | Steel | Max Traction Load (N) | 18210 | 40530 | | | Breaking Strength (N) | 69200 | 141860 | | | Elongation at MTL (mm/m) | 4 | 4 | | | | | | | | | Average | values | # **MEGALINEAR ATG20 OPEN-END** # **FLEXION RESISTANCE** | | Z _{min} | Z _{min} | Idler min dia (mm) | Z _{min} | Idler min dia (mm) | |----------------------|------------------|------------------|--------------------|------------------|--------------------| | Standard steel cords | 30 | 34 | 180 | 30 | 160 | # **JOINED BELT INFORMATION** - Minimum splice length 900 mm - Traction and tooth resistances = 50% less than open-end - Joined belt can be used only in conveyor systems - Rolls with NFT, NFB, and AVAFC can be joined
too - Minimum diameters according above table - For coated belts, minimum diameters on page 120 | N°
Teeth | Dp | De | N°
Teeth | Dp | De | |-------------|--------|--------|-------------|--------|--------| | 30 | 190,99 | 188,13 | 40 | 254,65 | 251,80 | | 32 | 203,72 | 200,86 | 48 | 305,58 | 302,73 | | 36 | 229,18 | 226,33 | 60 | 381,97 | 379,12 |